If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x=84
We move all terms to the left:
x^2-6x-(84)=0
a = 1; b = -6; c = -84;
Δ = b2-4ac
Δ = -62-4·1·(-84)
Δ = 372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{372}=\sqrt{4*93}=\sqrt{4}*\sqrt{93}=2\sqrt{93}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{93}}{2*1}=\frac{6-2\sqrt{93}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{93}}{2*1}=\frac{6+2\sqrt{93}}{2} $
| 273=-1E-05x+0,0053 | | y=-1E-05273+0,0053 | | 1/3x+x=32/3 | | y=-1E-05*273+0,0053 | | 4n-4=3n+7 | | x+4/3+1/3x=32/3 | | |A(x+3)(x^2+3)|=|x^2+15| | | 10^(2x+4)=100 | | |A(x+3)(x^2+3)|=x^2+15 | | 20x+25=25 | | x2=27-6x | | A(x+3)(x^2+3)=x^2+15 | | 2n-3(n+4)=15 | | 8x+99-2x=180 | | 2y+1➗7=3 | | c-2=12+9 | | 3y/10=3 | | 4×+2x+40=180 | | 9✖2=6y | | 30x=(-2x) | | 24/100=x/4 | | 4(5x-7)+7(-2x+10)=6 | | 3/(5x)-12=-9 | | 7x-3=2.6 | | 5(x-5)+6=26 | | 9x-1+6x+76=180 | | 3y=y+2100 | | Z^4-5z^2+7=0 | | x=1/3x+2100 | | /36k=-9 | | x+9/4=9/2+x-3/9 | | 13.1x-2.3x=73.6 |